

Engine Health Management for Aircraft Propulsion Systems

Al Volponi Sr. Fellow

Bruce Wood
Technology Manager

Health Management Definitions

Data: Basic Measured Characteristics

Information (Features): Useable (Actionable) Knowledge Derived from Data

Diagnostics: Current Condition of Component/System to Perform Function via Sensing

Prognostics: Future Ability of Component/System to Perform Function via *Reasoning*

Degradation: Slow Loss of Health Over Time

Fault: Rapid/Abrupt Loss of Health Due To An Event

Failure: Termination of Degradation/Fault Condition

Detection: Basic Identification of Occurrence Symptoms of Degradation/Fault

Isolation: Resolving of Health Degradation/Fault to Specific Component(s)

Monitoring: Observation/Measurement of Component/System Health

Management: Proactive Capability to Make Decisions About Component/System Health

Health Management Definitions

Failure Progression Timeline

Drivers for Health Management

Many Different Perspectives

Line Maintainer Perspective

- Wiring Diagnostics
- Event Troubleshooting
- Borescope Inspection
- Vibration Survey / Trim Balance
- Lubrication System Inspections
- Oil Consumption Monitoring
- Filter Inspections / Troubleshooting

.

Logistics Manager Perspective

- Maintenance Cost
- Support Personnel
- Unit Level Part Consumption
- Sustaining Support
- Indirect Support / Shop Operations

Fleet Manager Perspective

- Avoid Engine Damaging Events
- Faster Troubleshooting
- Accurately Identify Line Replaceable Units
- Improve Shop Planning
- Limit High Power Troubleshooting Ground Runs
- Smaller Rotating / Spare Engine Inventory

Integrated Health Management

Putting Together the "Puzzle"

There Is No "One-Size Fits All" Solution

- System Requirements Vary for Different Engines/Aircraft
- Various Customers Will Have Different Needs
- OEM Customer: Fleet Management Plans

Not A Decision Between On-Board vs Off-Board

- Need Both On and Off-Board Capabilities
- Determine "Where Best To Do What" for Each Application

Data Flow Drives Need for Vehicle Integration

- Need Means to Get Data to Maintainer / Fleet Managers
- Unified Vehicle Data Transfer System Offers Benefit

"Pieces of the Puzzle"

Integrated Health Management

Many Options: Key is Finding Right Mix of On and Off Board Capabilities

Gaspath Performance Monitoring Self Tuning On-board Real-time Model

Tuners represent changes in Module Performance, i.e. Δ efficiencies and flow parameters indicative of deterioration, component damage and/or **build** variations.

Gaspath Performance Monitoring

enhanced Self Tuning On-board Real-time Model

Gaspath Performance Monitoring **Anomaly Detection**

Anomaly Detection: Identify Differences from "Normal"

- Provides <u>Trigger</u> to Capture Real-Time Data for Subsequent Off-Board Analysis
- Additional Data to Support Fault Isolation
- Element of Long-Term Performance Deterioration Tracking

Gaspath Performance Monitoring – Benefits

Parameter Synthesis for Virtual Sensor

- Analytical Redundancy
- Airflows, Difficult to Measure Temperatures/Pressures, Thrust, etc.
- Sensor Substitution
- More Information from Fewer Sensors

Performance Deterioration Trending (Gas Path Analysis)

- Estimate Performance Shifts (e.g. Flow capacity, Efficiency, etc.)
- Input Errors (Stuck Bleeds, etc.)

Fault Detection

Isolate In-Range Drifts / Failures

Reliability and Cost Benefits

- Early Warning of Component Degradation
- Dispatch and Cancellation Rate via In-Flight Notification
- Damage Avoidance

Control Adjustments for Deterioration

Ratings Adjustments for Deterioration

Mechanical Systems Monitoring

Typical Suite of Sensors

- Oil Temperature
- Fuel Temperature
- Oil Filter Pressure Drop: Filter Health
- Fuel Filter Pressure Drop: Filter Health
- Oil Pressure
- Oil Quantity: Oil Consumption

Sensors Available

- Oil Debris: Size/Rate of Particles in Oil
- Oil Condition: Thermal Degradation of Oil Itself
- Improved Oil Quantity/Level Sensing
- Gearbox Vibration (High Frequency)

Models:

Select Fuel and Lube Elements

Algorithms Available

- Level and Rate Trending (Similar to Gaspath Analysis)
- Real-Time Vibration Analysis

Oil Debris Monitor

Oil Level & Condition Monitor

Vibration Monitoring

Structural Monitoring

Typical Suite of Sensors

Vibration Level (by Aircraft)

Sensors Available

- Case Vibration Monitoring (by Engine)
- FOD/DOD Debris: Particle Monitoring
- Blade: Clearance and Passage Monitoring

Models:

- Structural Transfer Functions
 - Measurement(s) to Component Condition

Algorithms Available

- Real-Time Vibration Analysis
- Component Life Usage / Life Remaining (Below)

High Frequency Vibration Monitoring

Debris Monitoring

Blade Monitoring

Off-Board: Maintenance Support Tools

Diagnostics and Prognostics

On-Condition Management

Removal and Shop Visit Planning

Trending

Configuration and Utilization Tracking

Removal Planning / Event Tracking

Early Warning Detection

Fleet Alert Summary and Watchlists

Modification Incorporation

Isolation

Modification Standardization

Shop Maintenance Instructions

Integrated PHM Architecture & Technology Improves Value

Reduced

Value

Schedule Interruptions
Troubleshooting Time
Maintenance Costs
UERs, D&Cs, IFSDs

Improved

Life Management Cost of Ownership Time on Wing Forecasting

Ground

Fault Forwarding / Directed Maint. Prognostics, Trending, Alerting & Isolation

Fleet Watchlists Configuration./Utilization. Tracking

Life Extension On-Condition Fleet Mgmt

Shop Visit Optimization

Aircraft & Systems

Data Storage & Communications

Anomaly Detection Advanced Vibration Life Usage
Oil System Press/Temps/Debris
Oil/Fuel Filter Health Gas Path Press/Temps